Robust detection techniques for multivariate
spatial data
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Spatial data

Spatial data are characterized by n statistical units, with
known geographical positions, on which p non spatial at-

tributes are measured.

Example: A conflict measure in 42 african countries.

Spatial outlier
Haslett et al. |3] distinguishes two types of outliers in spatial data.

- A global outlier is an observation that might have non spatial attributes
with significantly differing values wrt the majority of the data points.

- A local outlier is an observation that might have non spatial attributes
with significantly differing values wrt its neighbors.

Geographic representation Attribute representation

-'The blue observation 1s a local but

o not global outlier.

-'The green observation is a local and
olobal outlier.

-'The red observation is a global but

not local outlier.

Covariance matrix estimator
e Minimum Covariance Determinant (MCD) estimator

1
SH = Z(% —ZTg)(T; — fH)T
2]
for some specific subset H of {1,...,n} that minimize the determinant.

This estimator is robust but not invertible if |H| < p.
e Regularized estimator
(1, i) — argmax {log L(p,X) — )\J(Z_l)}
(1,2)

where J is a penalty function (e.g., trace, L.1 or L.2 norm). The covariance
matrix estimator is invertible.

e Regularized MCD 2]
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for the optimal subset H.

Detection technique of Filzmoser et al. [1]

e (Global outlier detection :
(a) Estimate robustly the general structure: MCD over

the whole dataset gives (1,>3).

(b) Compute Mahalanobis distances between the center
and each observation z; (1 =1,...,n):

N

MD(g,i)(xi) = (z; — )" X7 (2 — 1)

(¢) If the distance M D5, (x;) is larger than a chisquare
quantile then z; is considered as a global outlier.
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Detection technique of Filzmoser et al. [1]

e Local outlier detection :
For each observation x; (1 =1,...,n):

(a) Compute the pairwise Mahalanobis distances be-
tween x; and 1ts £ neighbors x; using the global

structure:
M Dg(;, z5) = (v — ;)" 71 (2 — x).

(b) Determine the ellipsoid containing a proportion
B of its k neighbors.

(¢) If the tolerance level of this ellipsoid is too large
according to the chisquare distribution then the

observation is considered as a local outlier.

Proposition 1 : parametric technique

This proposition is an adaptation of the technique presented by Filzmoser
et al. 1] for the local outlier detection. Two improvements are proposed.

1. Use a local structure estimated separately on each
neighborhood instead of the general one. N gt
As the size k of the neighborhood can be smaller than IRt
the dimension p, the local structure has to be esti- AR
mated by a robust and regularized estimator.
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2. Instead of testing the local outlyingness of each ob-
servation, we suggest to focus only on the observations

corresponding to a positively spatially autocorrelated
neighborhood. | B
The multivariate autocorrelation of a neighborhood o:@-off -q»
1s estimated by means of the determinant of the reg- IR

ularized MCD covariance estimator computed on the
neighborhood and only the neighborhoods yeilding
the smallest values are selected.

Variable 1

Proposition 2 : non parametric technique

This non parametric detection technique for local outliers is based on depth
functions [5].

As in the first proposition, local outlyingness is tested only on positively
spatially autocorrelated neighborhoods. By definition the neighbors of a
local outlier are “far” from it according to other observations.

To compare an observation x; and its neighbors, let’s
make x; the deepest point (the center) by using the — :. =
symmetrized dataset [4]. Then calculate the depth iy
values of its neighbors in this new dataset. 2 -
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If the (8K)" depth is too small or equivalently, if more
than a proportion 8 of its neighbors are too far ac- O )
cording to other observations then x; is considered as B

a local outlier.
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On going research

Some partial findings are:

e Restricting the detection to the positively spatially autocorrelated neigh-
borhoods is necessary to avoid increasing the “false-positive” detection
rate;

e The chisquare distribution is not a good approximation for the distribution
of the “regularized” robust distances;

e The tuning of the parameters (k, ) still needs to be improved.




